Monoclonal antibodies to the light-harvesting chlorophyll a/b protein complex of photosystem II

نویسندگان

  • S C Darr
  • S C Somerville
  • C J Arntzen
چکیده

A collection of 17 monoclonal antibodies elicited against the light-harvesting chlorophyll a/b protein complex which serves photosystem II (LHC-II) of Pisum sativum shows six classes of binding specificity. Antibodies of two of the classes recognize a single polypeptide (the 28- or the 26- kD polypeptides), thereby suggesting that the two proteins are not derived from a common precursor. Other classes of antibodies cross-react with several polypeptides of LHC-II or with polypeptides of both LHC-II and the light-harvesting chlorophyll a/b polypeptides of photosystem I (LHC-I), indicating that there are structural similarities among the polypeptides of LHC-II and LHC-I. The evidence for protein processing by which the 26-, 25.5-, and 24.5-kD polypeptides are derived from a common precursor polypeptide is discussed. Binding studies using antibodies specific for individual LHC-II polypeptides were used to quantify the number of antigenic polypeptides in the thylakoid membrane. 27 copies of the 26-kD polypeptide and two copies of the 28-kD polypeptide were found per 400 chlorophylls. In the chlorina f2 mutant of barley, and in intermittent light-treated barley seedlings, the amount of the 26-kD polypeptide in the thylakoid membranes was greatly reduced, while the amount of 28-kD polypeptide was apparently not affected. We propose that stable insertion and assembly of the 28-kD polypeptide, unlike the 26-kD polypeptide, is not regulated by the presence of chlorophyll b.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Topological studies of spinach 22 kDa protein of Photosystem II.

An intrinsic 22 kDa polypeptide is associated with the O2-evolving Photosystem II core complex in a variety of green plants, although it does not appear to be required for O2 evolution. Digestion of thylakoid membranes and isolated Photosystem II preparations with trypsin, followed by immunoblotting using spinach anti-22 kDa antibodies, leads to two observations: (1) the domain between the 2nd ...

متن کامل

Light-harvesting pigment-proteins of photosystem I in maize. Subunit composition and biogenesis.

Three different pigment-binding proteins of the light-harvesting complex (LHC I) of maize photosystem I (PS I) have been isolated. Absorption and fluorescence excitation spectral analyses showed that each pigment-protein can transfer absorbed energy from its carotenoid and/or chlorophyll b components to chlorophyll alpha. Their apoproteins with apparent sizes of 24 (LHC Ia), 21 (LHC Ib), and 17...

متن کامل

Chloramphenicol stimulation of light harvesting chlorophyll protein complex accumulation in a chlorophyll B deficient wheat mutant.

As compared with normal wheat leaves, the chlorina wheat mutant, designated CD3, has a high chlorophyll a/b ratio and a deficiency in the light harvesting chlorophyll protein (LHCP) complex. Applications of 200 micrograms per milliliter of d-threo-chloramphenicol to etiolated seedlings decreased the chlorophyll a/b ratio and increased the accumulation of the 27 kilodalton LHCP polypeptide and t...

متن کامل

Chloroplast Import of Light-Harvesting Chlorophyll a/b-Proteins with Different Amino Termini and Transit Peptides.

We have previously isolated and sequenced two genes encoding light-harvesting chlorophyll a/b-proteins (LHCP) from Lemna gibba. One of these, AB30, encodes a protein that is highly homologous to LHCP sequences reported from other species, but the second, AB19, encodes a protein that has a transit peptide and first 12 amino-terminal residues of the mature protein that are substantially different...

متن کامل

Conversion of Chlorophyll b to Chlorophyll a and the Assembly of Chlorophyll with Apoproteins by Isolated Chloroplasts.

The photosynthetic apparatus is reorganized during acclimation to various light environments. During adaptation of plants grown under a low-light to high-light environment, the light-harvesting chlorophyll a/b-protein complexes decompose concomitantly with an increase in the core complex of photosystem II. To study the mechanisms for reorganization of photosystems, the assembly of chlorophyll w...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of Cell Biology

دوره 103  شماره 

صفحات  -

تاریخ انتشار 1986